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Special Report

Bonding to enamel and dentin: A brief history and state of the art, 1995
Edward J. Swift. Ir*/ Jorge Perdigdo** / Harald O. Heymann***

The acid-etch technique for bonding composite resins to enamel has revolutionized the prac-
tice of restorative dentistry. The ability of clinicians to bond restorative materials to enamel
has fundamentally changed such diverse areus as cavity preparation. caries prevention, and
esthetic treatment options. Although bonding of resin to dentin has proved to be a difficult
challenge, ongoing advances are improving the reliability and predictability of dentinal adhe-
sion. The purpose of this article is to provide a brief history of enamel and dentinal bonding.
as well as an overview of the current state of the art. (Quintessence Int 1995:26:95-110.)

The acid-etch technique

The foundation for adhesive restorative and preven-
tive dentistry was laid in 1955, when Buonocore' pro-
posed that acids could be used to alter the surface of
enamel to “render it more receptive to adhesion.” His
hypothesis was based on the common industrial use of
phosphoric acid to improve adhesion of paints and
acrylic coatings to metal surfaces. Buonocore found
that acrylic resin could be bonded to human enamel
that was conditioned with 85% phosphoric acid for 30
seconds. Prophetically. he proposed several potential
uses for this new “bonding” technique. including Class
1T and Class V restorations and pit and fissure sealants.
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Subsequent work by Gwinnett and Matsui’ and Buo-
nocore and others’® suggested that the formation of
“resin tags” was the primary attachment mechanism of
resin to phosphoric acid-eiched enamel. Acid etching
removes about 10 um of the enamel surface and creates
a porous layer ranging from 5 to 50 pm deep. When a
low-viscosity resin is applied. it flows into the micropo-
rosities and channels of this layer and polymerizes to
form a micromechanical bond with the enamel. Etch-
ing also increases the wettability and surface area of the
enamel substrate.*$

Gwinnett® and Silverstone et al’ described three pat-
terns of etching in enamel (Figs la to 1c). The most
common, or Type 1, etching pattern involves preferen-
tial removal of enamel prism cores: prism peripheries
remain relatively intact. The Type 2 etching pattern is
the reverse process; ie, the peripheries are removed,
leaving the cores intact. The Type 3 etching pattern is
less distinct. It includes areas resembling each of the
other patterns. as well as regions in which the etching
pattern appears unrelated to prism morphology.

Various concentrations of phosphoric acid have been
evaluated as enamel etchants, and some form precipi-
tates that might interfere with resin bonding.® One
study showed that 60-second applications of 50% phos-
phoric acid produce a precipitate (monocalcium phos-
phate monohydrate) that can be rinsed off. However,
concentrations of less than approximately 27% form a
precipitate (dicalcium phosphate dihydrate) that can-
not be easily removed.’

95



Special Report

Fig 1a Scanning electron micrograph of etched enamel
showing Type | etching pattern. (Bar = 5 um.)

Fig 1c  Scanning electron micrograph of etched enamel
showing Type Ill etching pattern. (Bar = 5 um.)

Silverstone” reported that phosphoric acid concen-
trations of between 30% and 40% provide enamel sur-
faces that have the most retentive appearance. Also,
calcium dissolution and etching depth increase with
phosphoric acid concentration until the acid concentra-
tion reaches 40%. Stronger solutions dissolve less cal-
cium and result in smaller etching depths.!

As aresult of these studies, most commercial enamel
etchants are 30% to 40% (frequently 37%) concentra-
tions of phosphoric acid. However, lower concentra-
tions have been shown. in some studies.!’** to provide
bond strengths similar to those obtained with 30% to
40% phosphoric acid.

Reduced enamel etching times

A 60-second application time traditionally has been
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Fig 1b Scanning electron micrograph of etched enamel
showing Type Il etching pattern. (Bar = 5 um.)

recommended for etching enamel with 30% to 40%
phosphoric acid. One study concluded that shorter
etching times resulted in lower tensilc bond strengths.'
However, subsequent studies with scanning electron
microscopy (SEM) have indicated that etching times as
brief as 15 seconds provide essentially the same surface
roughness as a 60-second etching time.'*"'” Laboratory
tests also have shown that shear bond strengths and
marginal microleakage are similar for 15- and 60-sec-
ond etching times.'®*! In addition, clinical studies have
shown that sealant retention is not adversely affected
by reduced etching time.=%

Benefits of enamel bonding

Shear bond strengths of composite resin to phosphoric
acid—etched enamel are tvpicallv in the range of 20
MPa."*1"1¥ Such bond strengths provide routinely suc-
cessful retention of resins for a variety of clinical appli-
cations, including direct anterior and posterior com-
posile restorations. porcelain and composite resin ve-
neers and inlays. orthodontic brackets. resin-bonded
prostheses. and pit and fissure sealants.

Furthermore, etching reduces leakage around resto-
ration margins in enamel®®*! (Fig 2). Composite resins
shrink as they polymerize. and contraction stresses of
up to 7 MPa develop within the resin.***” However. the
magnitude of these stresses varies with cavity configu-
ration. For example. when composite resin is bonded to
a single surface, flow relaxation occurs within the com-
posite resin as it sets. relieving some of the contraction
forces. In three-dimensional cavity preparations, only
the outer surface of composite resin is unbonded, so
less flow is possible and much greater stresses occur
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Fig2 Section of a specimen from a microleakage study.
Note the complete absence of leakage at the etched enamel
margin and the extensive leakage at the gingival (dentin-
cementum) margin. (Courtesy of Dr Daniel Fortin, University
of Montreal.)

within the material.”*™® It has been estimated that
shear bond strengths of 17 to 20 MPa are required to re-
sist contraction forces sufficiently to produce gap-free
restoration margins.”’?° Enamel bond strengths are
generally adequate to prevent opening of margins by
polymerization shrinkage.

Composite resin restorations bonded to etched
enamel provide another important benefit—reinforce-
ment of cusps. Cavity preparations weaken teeth and
increase the risk of cuspal fracture, and conventional
restorative mateials provide little or no reinforcement
of the weakened tooth structure. In contrast. labora-
tory and clinical data suggest that bonded composite
resin restorations provide substantial cuspal reinforce-
ment 305

The benefils of enamel bonding are enhanced by the
use of proper isolation techniques. In a recent clinical
study, composite resin posts were bonded to teeth that
were treatment planned for extraction.® The teeth
were isolated with either rubber dam or cotton rolls for
the bonding procedures. Shear bond strengths were de-
termined after the teeth were removed and were found
to be significantly higher for specimens that had been
isolated with rubber dam.

Alternative acids for etching enamel

Several new adhesive systems rely on simultaneous
etching of dentin and enamel with weaker acids than
the traditional 30% to 40% phosphoric acid etchants.
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Fig 3 Scanning electron micrograph of dentinal tubules.
(Bar =5um))

Some studies indicate that acids such as 10% phos-
phoric acid, 10% maleic acid, and 2.5% nitric acid etch
enamel as effectively as 37% phosphoric acid.!*3"%
However, data from other studies indicate that the
weaker acids provide significantly lower shear bond
strengths when the manufacturers’ recommended ap-
plication times are used to etch enamel.** The clinical
consequences of ctching enamel with weaker acids are
not yet fully known.

Problems in bonding to dentin

Adhesion of restorative materials to enamel has be-
come a routine and reliable aspect of modern restora-
tive dentistry, but dentinal adhesion has proved to be
more difficult and less predictable. Much of the diffi-
culty in bonding to dentin is the result of the complex
histologic structure and variable composition of dentin
itself. Whereas enamel is 92% inorganic hydroxyapa-
tite by volume, dentin is (on average) only 45% inor-
ganic. Also. in contrast to the regular arrangement of
hydroxyapatite crystals in enamel, dentinal hydroxy-
apatite is randomly arranged in an organic matrix that
consists primarily of collagen.*

Dentin is intimately connected with the pulpal tis-
sues, and numerous fluid-filled channels or tubules (Fig
3) traverse through dentin from the pulp to the denti-
noenamel junction (DEJ). An odontoblastic process
extends from the pulp into the inner portion of each tu-
bule.™ The fluid in the tubules is under a slight, but con-
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Fig4 Scanning electron micrograph showing intertubular
and peritubular dentin. Lumen of dentinal tubule (T); peri-
tubular dentin (P); intertubutlar dentin (l). (Bar = 1 um.)

Fig6 Smear layer on dentin that was instrumented with a
diamond rotary instrument. The dentinal tubule is obstruct-
ed by a smear plug (P). (Bar = 1 um.)

stant, outward. pressure from the pulp. The intrapulpal
pressure is estimated to be 25 to 30 mm Hg (or 34 to 40
cm H,0).%%

Each tubule is surrounded by a collar of hyperminer-
alized dentin called peritubular dentin. The less miner-
alized dentin between tubules is called inrerrubular
dentin* (Fig 4). The relative area of dentin occupied by
tubules decreases as they diverge from the pulp. The
number of tubules decreases from about 45.000 per
mm- at the pulp to about 20.000 per mm* at the DEJ in
coronal dentin.* Pashley® has calculated that tubules
occupy 22% of the cross-sectional area near the pulp
and only 1% near the enamel. Heymann and Bayne™
recently calculated values of 28% and 4% for tubule
volumes in these areas. respectively (Fig 5).
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Fig5 Diagram of tubule volume near the pulp and near the
DEJ. From Heymann and Bayne.*° Reprinted by permission.

Fig 7 Scanning electron micrograph showing bacteria in
the smear layer. (Bar = 1 um.)

Regional variations in dentinal structure and compo-
sition are related to other factors besides depth. Re-
gional variation is reflected in the permeability charac-
teristics (or hydraulic conductance) at different loca-
tions within a tooth. For example. the permeability of
occlusal dentin is higher over the pulp horns than at the
center of the occlusal surface.’! Similarly, proximal
dentin is more permeable than occlusal dentin, and
coronal dentin is more permeable than root dentin.>

Dentinal bonding is further complicated by the for-
mation of a smear layer as debris is burnished onto the
dentinal surface while the dentin is cut or ground (Fig
6). The smear layer. which is 0.5 to 3.0 pm thick. oc-
cludes the orifices of the dentinal tubules. Its thickness
and appearance vary with the specific substrate and the
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type of cutting instrument used.”* Although smear
layers act as “diffusion barriers™ that decrease the
permeability of dentin.* they can also be considered an
impediment that must be removed so that resin can be
bonded to the underlying dentinal substrate. Further-
more, bacteria entrapped in smear layers can survive
and multiply beneath restorations™ (Fig 7).

Development of resin dentinal adhesives

Buonocore et al”’ reported nearly four decades ago
that a resin containing glycerophosphoric acid dimeth-
acrylate could bond to hydrochloric acid—etched den-
tinal surfaces. However, the bond strengths of this early
method of adhesion were greatly diminished by im-
mersion in water. To overcome this problem, Bowen®
synthesized N-phenylglycine glycidyl methacrylate
(NPG-GMA). a “surface-active comonomer™ that
theoretically could mediate water-resistant chemical
bonds of resins to dentinal calcium. However, commer-
cial products based on NPG-GMA had very poor clini-
cal results when they were used to restore cervical ero-
sion lesions without mechanical retention.>%

A second generation of dentinal bonding agents was
developed for clinical use during the early 1980s. With
the exception of Scotchbond Dual-Cure (3M Dental)
and Bondlite (Kerr). second-generation bonding
agents are no longer commercially available. Most of
these materials were halophosphorous esters of un-
filled resins such as bisphenol A-glycidyl methacrylate
(bis-GMA) or hydroxyethyl methacrylate (HE-
MA).%'%2 The bonding mechanism involves a surface-
wetting phenomenon as well as ionic interaction
between the phosphate groups and dentinal cal-
cium.®2® Shear dentinal bond strengths of only about 1

to 10 MPa have been reported for these bonding .

agents.®%* Bond strengths in this range are considered
too weak to counteract the polymerization shrinkage
of composite resin.?’? Furthermore, some evidence in-
dicates that bonds between phosphonate esters and
dentin are hydrolyzed by immersion in water.® There-
fore. composite resin tends to separate from dentin.
forming gaps at restoration margins.?’ These gaps allow
considerable microleakage at margins in dentin or ce-
mentum, %7

Several clinical studies of bonding agents that con-
tain phosphonate esters have been reported.®7! The
clinical performance of phosphonate esters used with-
out enamel etching or mechanical retention was rela-
tively poor. with fairlv high percentages of cervical res-
toration loss over 1- to 3-year evaluation periods.
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A major reason for the poor performance of these
bonding agents is the fact that they bond to the smear
layer rather than to the dentin itself. Hence, their bond
strength is limited by the cohesive strength of the smear
layer or by adhesion of the smear layer to the underly-
ing dentin, which is tenuous at best.”>"*

More recently developed dentinal bonding systems,
sometimes called third-generation adhesives. either
modify or completely remove the smear layer to allow
resin penetration into the underlying dentin.”*”® Shear
dentinal bond strengths of agents such as Scotchbond 2
(3M Dental). Gluma (Bayer/Miles). Tenure (Den-
Mat). Prisma Universal Bond 3 (Caulk/Dentsply), Syn-
tac (Ivoclar Vivadent). and XR Bond (Kerr) usually
are greater than those of the second-generation agents
and can approach the typical bond strengths of resin to
etched enamel. However, their performance is still un-
predictable. even in laboratory studies. For a
given bonding agent, bond strengths vary greatly not
only among different studies, but also within stud-
jes.’s86

These dentinal adhesives are generally more effec-
tive than their predecessors in reducing microleakage
at dentinal and cementum margins, 3 although they
do not completely eliminate marginal leakage. %
Composite resin restorations bonded with these adhe-
sives can reinforce tooth structure that has been weak-
ened by disease. trauma. or cavity preparation. >
Clinically, 3-year studies of Scotchbond 2 and Gluma in
cervical areas have demonstrated that these systems
provide considerably better clinical performance (re-
tention, marginal integrity, etc) than did earlier adhe-
sives. %97

Current dentinal adhesives

Most of the current developments in dentinal bonding
lechnology involve the “total-etch” technique, or si-
multaneous etching of enamel and dentin with phos-
phoric or other acids. An improvement in dentinal
bond strengths by etching was first demonstrated by
Fusayama et al® in 1979. and dentinal etching has since
become a fairly common practice in Japan. However,
the concept of total etching only recently has gained ac-
ceptance in the United States.”1® The shift towards to-
tal etching is a radical development in American restor-
ative dentistry because etching of dentin traditionally
has been discouraged. Data from studies conducted
during the 1970s seemed to indicate that phosphoric
acid etching of dentin caused pulpal inflamma-
tion."""! However. very little acid actually penetrates

99



Special Report

Fig8a Surface view of dentin that was etched with 10%
phosphoric acid for 15 seconds. The specimen was fixed
and critical point dried. (Bar = 2 pm.)

dentin, so it seems unlikely that the acid is directly re-
sponsible for any pulpal damage that might occur.'®
Most evidence now indicates that lack of an adequate
marginal seal is the primary cause of pulpal inflamma-
tion associated with permanent restorations. Little or
no inflammation occurs if restorations are scaled well
enough to prevent bacterial invasion of the pulp./®?’
Furthermore. Kanca'® hypothesized that in some stud-
ies pulpal inflammation was caused not by phosphoric
acid, but by zinc oxide—eugenol materials used to seal
deep acid-etched cavities.

Recent SEM and transmission electron microscopy
(TEM) studies have provided significant information
about how the current generation of adhesive systems
bonds to dentin.!*!®1* Although many different types
of conditioners, primers. and adhesive resins are used.
the bonding mechanisms of the various etched-dentin
adhesive systems are remarkably similar. Acid etching
removes the smear layer, opens the dentinal tubules,
increases dentinal permeability, and decalcifies the
intertubular and peritubular dentin (Figs 8a and 8b).
The depth of decalcification is affected by various fac-
tors, including the pH. concentration, viscosity, and ap-
plication time of the etchant.!®!* Removal of hydro-
xyapatile crystals leaves a collagen meshwork that can
collapse and shrink because of the loss of inorganic
support. 19113

After the conditioner is rinsed off, a primer contain-
ing one or more hydrophilic resin monomers is applied
(Fig 9). Primer molecules such as HEMA, biphenyl
dimethacrylate (BPDM) and 4-methacryloxyethyl tri-
mellitate anhydride (4-META) contain two functional
groups—a hydrophilic group and a hydrophobic group.
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Fig 8b Laterai view of dentin that was etched with 10%
phosphoric acid for 15 seconds. The specimen was fixed
and critical point dried. (Bar = 2 pm.)

The hydrophilic group has an affinity for the dentinal
surface and the hydrophobic (methacrylate) group has
an affinity for resin. The primer wets and penetrates
the collagen meshwork, raising it almost to its original
level. The primer also increases the surface energy, and
hence the wettability. of the dentinal surface. Unfilled
resin is applied to and penctrates the primed den-
lin, copolymerizing with the primer to form an inter-
mingled layer of collagen and resin, termed the resin-
reinforced zone, resin-infiltrated laver. or hybrid layer
(Figs 10 and 11). Formation of this hybrid layer of den-
tin and resin. which was first described by Nakabayashi
et al''® in 1982, is thought to be the primary bonding
mechanism of most current adhesive systems.!®117
Bond strengths are generally lower when the bonding
agent does not form a hybrid layer.’*!'” Date from a
recent in vitro study indicated that resin infiltration (or
hybridization) of the dentinal tubules and intertubular
dentin accounted for a substantial proportion of the
bond of resin to dentin.''

Scanning electron microscopy also reveals that many
adhesives form long resin tags within the dentinal tu-
bules of extracted teeth (see Fig 10). The tags are im-
pressive in appearance and may convey some informa-
tion about the wetting characleristics of a material.
However. resin tags provide little or no retention un-
less they are firmly bonded to the tubule walls. Even
conventional (hydrophobic) enamel bonding resins
will form long tags in etched dentin, but provide no ap-
preciable bond strength because the resin does not ad-
equately wet or bond to the tubule walls.''® Further ev-
idence for the relative lack of importance of resin tags
is the fact that bond strengths to deep, tubule-rich den-
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Fig9 Dentin etched with 10% phosphoric acid and
primed with All-Bond primers A and B. The primers did nct
occlude the tubules in this area of the specimen. The speci-
men was fixed and critical point dried. (Bar = 2 pm.)

tin are generally lower.!”® Finally, resin tags formed in
vivo are probably shorter than those in extracted teeth
because dentinal tubules are filled with fluid that re-
duces resin penetration.'?!

One important concern that has arisen from SEM
and TEM studies is the potential for discrepancies
between the depths of decalcification and resin pene-
tration of etched-dentin adhesive systems.!®11%113 The
bond strength of an etched-dentin adhesive may rely
on its ability 1o completely replace dissolved hydroxy-
apatite with polymerized resin. If dentin is decalcified
so deeply that the decalcified zone cannot be thorough-
ly impregnated by resin, a fragile collagen layer may re-
main and degrade over time.'®'”? Although the prim-
ers currently in use are very hydrophilic, adequate re-
sin impregnation may require the use of etching tech-
niques that do not result in excessive decalcification
depths. Shorter etching times or less aggressive acids
may be usedin the future.!'S However, one recent study
indicated that hydrophilic resins could com-
pletely permeate decalcified dentin regardless of the
aggressiveness of the etching procedure.!®

Several major dental products manufacturers re-
cently introduced a new generation of bonding systems
that etch dentin with phosphoric or other acids. Exam-
ples include All-Bond 2 (Bisco Dental). Amalgam-
bond (Parkell). Clearfil Liner Bond (Kuraray/J Mori-
ta), Imperva Bond (Shofu Dental), OptiBond (Kerr),
and Scotchbond Multi-Purpose (3M Dental). Many of
these systems are so new that almost no independent
data regarding bond strengths or other properties have
been reported. However, a fairly substantial amount of

Quintessence International  Volume 26, Number 2/1995

Fig 10 Resin tags and mixed zone of dentin and resin
formed by the All-Bond 2 adhesive system. Dentin was dis-
solved by immersion in hydrochloric acid and sodium hypo-
chlorite. Hybrid layer (H). (Bar = 5 um.)

Fig 11 Transmission electron micrograph of the resin-
dentin interface created by All-Bond 2, showing the hybrid
layer (H) and the underlying dentin (D). (Bar = 5 um.)

information about products such as All-Bond 2, Amal-
gambond, and Scotchbond Multi-Purpose is already
available based on laboratory studies.

Several studies have indicated that shear bond
strengths of All-Bond 2 exceed the typical enamel
bond strength of 20 MPa, particularly when dentin
is left visibly moist after etching.'****'?® Somewhat
lower bond strengths have been reported in other stud-
ies.&).129,l30

When All-Bond 2 is used, enamel and dentin are
both etched with 10% phosphoric acid for 15 seconds.
Phosphoric acid removes the smear layer, opens and
widens the orifices of the dentinal tubules, and demin-
eralizes intertubular dentin, reportedly to a depth of
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about 7 um.'® After etching and rinsing, the tooth sur-
face is left visibly moist or is dried with compressed air
and remoistened with water or an antibacterial solu-
tion (eg. chlorhexidine)."! Maintaining a moist surface
may be essential for optimal development of the hybrid
layer when All-Bond and other hydrophilic bonding
systems are used. Desiccation of the conditioned den-
tin can cause collapse of the unsupported collagen net-
work, inhibiting adequate wetting and penetration by
the primer. However, the clinician must be aware that
pooled moisture should not be allowed to remain on
the tooth because excess water can dilute the primer
and render it less cffective. A “glistening.” hydrated
surface is preferred.

Several coats of a primer mixture containing N-p-to-
lylglycine-glycidyl methacrylate (NTG-GMA) and
BPDM in acetone are applied to the surface. Acetone
apparently acts as a water chaser. displacing water and
carrying the resin primers into the demineralized den-
tin."*? An unfilled resin mixture (bis-GMA. urethane
dimethacrylate [UDMA], and HEMA) is applied and
visible light cured. The unfilled resin copolymerizes
with the primer and the composite resin restorative
material.'*

Scotchbond Multi-Purpose Dental Adhesive uses
10% maleic acid to etch dentin and enamel for 15 sec-
onds. Ten percent maleic acid decalcifies the dentin
surface to a depth of 3 um.'® After rinsing and drying
are completed, a hydrophilic primer is applied to the
surface and gently dried. The primer, an acqueous solu-
tion of HEMA and a polyalkenoate copolymer. infil-
trates the etched dentin. Finally, an unfilled resin con-
taining bis-GMA and HEMA is applied and cured with
visible light. The manufacturer claims a shear bond
strength of 24 MPa to dry dentin,'** and there is some
evidence that Scotchbond Multi-Purpose bonds as well
or slightly better to moist dentin.’**13 One study re-
ported shear bond strengths of 21.8 MPa to moist den-
tin and 17.8 MPa to dry dentin.!*® The moisture resis-
tance of Scotchbond Multi-Purpose is probably related
to the formation of bonds between dentinal calcium
and the polyalkenoic acid component of the primer.
The presence of water facilitates ion exchange reac-
tions.!*

Concerns have been raised about the effectiveness of
10% maleic acid as an enamel etchant.*! Therefore,
some clinicians use a conventional phosphoric acid to
etch enamel and use maleic acid strictly to condition
dentin.'¥ Dentin can be etched with phosphoric acid
instead of maleic acid without significantly reducing
the bond strength of Scotchbond Multi-Purpose, and
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this product is now supplied with a 35% phosphoric
acid ctchant 1%

Amalgambond is based on a dentinal bonding
system developed in Japan by Nakabayashi and co-
workers!!® more than a decade ago. Amalgambond
uses a solution of 10% citric acid and 3% ferric chloride
to remove the smear layer and demineralize the dentin
to a depth of about 2 pm.'® A primer containing 35%
HEMA in water is applied after the dentin is condi-
tioned. Finally. a self-curing methyl methacrylate resin
is applied to impregnate the primed dentin. The resin
contains an adhesive monomer called 4-META.'® As
with All-Bond and Scotchbond Multi-Purpose. shear
bond strengths for Amalgambond and similar 4-
META products are generally close to or greater than
20 MPa 818510183 15 addition. 4-META systems appear
to be less affected than are most other adhesives by
dentinal depth and pulpal pressure.!?®142-14

Relevance of in vitro studies

Clinical studies of any dental material are time con-
suming and expensive. Cost is a particular drawback
whenever technology is developing rapidly. as it is now
in the area of dentinal bonding. There is no financial in-
centive for a manufacturer to spend hundreds of thou-
sands of dollars to test a bonding system that may be re-
placed by a newer product before a 2- or 3-year clinical
study can be completed. Therefore. dental products
manufacturers and researchers rely largely on labora-
tory (in vitro) testing to predict the clinical (in vivo)
performance of materials. Unfortunately, predicting
the clinical performance of any dentinal adhesive
system solely on the basis of in vitro data is extremely
difficult and often unreliable. Nevertheless. laboratory
testing can be used as a screening mechanism for pre-
dicling clinical performance.

The most commonly reported attribute of any bond-
ing system is its shear bond strength to dentin. How-
ever. laboratory methods for measuring bond strength
have litile direct clinical relevance. In a typical test, ex-
tracted teeth are ground flat, an adhesive system is ap-
plied, and a composite resin post is bonded to the sur-
face. A loading force is applied to the composite resin
until it shears from dentin. Tests of this type do not take
into account the three-dimensional nature of cavity
preparations, and thus underestimate the effects of
polymerization shrinkage.'® Moreover, the effects of
pulpal pressure, dentinal fluid. and tooth dynamics,
such as flexural phenomena, are not typically taken
into account.
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Microleakage data are also commonly reported for
dentinal bonding systems. Laboratory investigations
typically involve restoration of Class V cavity prepara-
tions or simulated cervical abrasion lesions using a
bonding system and composite resin. The specimens
are usually thermocycled. ie, alternately placed in hot
and cold solutions to simulate temperature changes
that occur in the mouth. However. the relationship
between thermocycling and actual clinical conditions is
ambiguous. Finally, the specimens are immersed in
some type of disclosing medium (eg. a dye or silver ni-
trate solution) that penetrates gaps at the interface
between restorative material and tooth structure. Sil-
ver nitrate penetration is a very harsh test of the margi-
nal seal because silver ions are considerably smaller
than are bacteria.¥’ In addition, the results of a recent
study suggest that less leakage occurs in vivo than in vi-
tro.1*

Other factors that contribute to the lack of correla-
tion between laboratory investigations and clinical re-
sults have been cited, including age and storage condi-
tions of specimens, location and depth of the dentin,
surface roughness, and type and duration of loading
forces.*>*""1* Perhaps the single most critical differ-
ence between laboratory and clinical conditions is that
very few laboratory studies attempt to simulate the hy-
dration or pulpal pressure of vital in vivo dentin."¥?

Clinical factors in dentinal bonding

Several clinical factors unrelated to the bond strength
of the adhesive system can contribute to the ultimate
success or failure of a bonded restoration. First. the
mineral content or dentin can increase with age, caries.
or exposure 10 the oral cavity (as in cervical erosion or
abrasion lesions). The width of peritubular dentin in-
creases and dentinal tubules become obstructed by
crystalline deposits. Dentin that has undergone such
microstructural alterations is termed sclerotic dentin
and is resistant to acidic conditioning solutions. There-
fore. resin penetration of the dentin is limited and thin-
ner hybrid layers are formed.’*!** The clinical perfor-
mance of dentinal adhesives is less satisfactory in scle-
rotic cervical lesions than in normal dentin.®’
Second, there is increasing evidence that masticatory
forces not only cause cervical erosion-abrasion lesions,
but also contribute to the failure of bonded Class V res-
torations.®'>*-1% Bruxism or other unfavorable occlu-
sion generates lateral forces that cause stress concen-
trations in the cervical area. Although these stresses
may have a fairly low magnitude, repeated flexural
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forces can ultimately result in fatigue failure of the
bonding interface between dentin and resin. As a re-
sult. marginal breakdown can occur or restorations can
be partially or completely dislodged.

A third factor that affects the longevity of a bonded
restoration is the type of composite resin restorative
material used.' Composite resins shrink during poly-
merization. and the volume of shrinkage depends on
the filler content of the material. Microfilled composite
resins shrink more than do heavily filled composite re-
sins, but they also have a lower Young's modulus.!*!¥
Low-modulus composite resins are able to relieve
some of the polymerization contraction stresses by
flow relaxation. Stiffer. high-modulus materials do not
flow as well and therefore compensate less for poly-
merization contraction stresses. In addition, highly
filled composite resins cannot flex adequately when
subjected to flexural forces and may transfer stress to
the bonding interface.

Reduced flow is a particular problem with light-
curing composite resins because polymerization is ini-
tiated at the restoration surface, effectively eliminating
that surface as a source of flow for stress relief.!>*158
One method for reducing overall restoration stiffness is
the application of a low-viscosity, low-modulus inter-
mediate resin between the bonding agent and restor-
ative resin to act as an “elastic buffer™ or stress break-
er” that can relieve contraction stresses and improve
marginal integrity.'>!%® Recent research indicates that
products such as OptiBond (unpublished data) and
Clearfil Liner Bond." which include a filled interme-
diate resin. reduce microleakage more effectively than
do some other dentinal adhesives that have higher
shear bond strengths. New stress-breaking liners of this
type also protect the bonding interface from fatigue
failure due to flexural forces.'®

New developments
Desensitization

Although evidence of efficacy remains largely anecdo-
tal. many clinicians have begun to use dentinal bonding
systems to treat hypersensitive exposed dentin and
teeth prepared for crowns.'6!'62 The mechanism by
which adhesives reduce hypersensitivity probably in-
volves hybrid layer formation and occlusion of the tu-
bules by resin tags."”” However. other factors may also
be involved.'® For example, All-Bond 2 primers are ef-
fective desensitizers even if no unfilled resin is applied,
despite the observation that the primers may not com-
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Fig 12a Scanning electron micrograph of tooth-restora-
tion interface of a bonded amalgam. (Bar = 100 pm.)

pletely occlude the dentin tubules (see Fig 9). Also,
clinical studies have shown that Gluma primer can be
used to desensitize teeth that have been prepared for
crowns or that have hypersensitive erosion-abrasion le-
sions.'®*!%5 Gluma primer contains 5% glutaraldehyde,
which is a biologic fixative. Glutaraldehyde may oc-
clude dentinal tubules and reduce permeability by co-
agulating plasma proteins within the tubules.'®

Indirect restorations

Several of the new adhesive systems are considered to
be universal dental adhesives because they bond not
only to dentin and enamel, but also to metal alioys. por-
celain. and composite resin.!**13313316%18% Ceramic and
composite resin inlays, onlays, crowns. and veneers can
be bonded to tooth structure with universal adhesives
and resin cements. Conventional crowns and fixed par-
tial dentures and resin-bonded prostheses also can be
adhesively bonded (o tooth structure with these mate-
rials after the proper surface treatments (such as sand-
blasting and tin plating) are completed.'® A full discus-
sion of indirect bonded restorations is beyond the
scope of this article.

Bonded amalgam restorations

One particuiarly interesting application of universal
adhesives is the bonded amalgam restoration. Numer-
ous laboratory studies have shown that certain resins,
including All-Bond 2, Amalgambond, and Panavia
(Kuraray/J Morita), can be used to bond amalgam to
dentin. The nature of the bond between resin and amal-
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Fig 12b Higher magnification view of resin-amalgam
interface. Note the intermixing of the two materials. Resin
(R); amalgam (A). (Bar = 25 um.)

gam is not clear. It appears to be at least partly mechan-
ical, as amalgam mixes with the fluid resin during con-
densation (Figs 12a and 12b). Although one recent
study reported a shear bond strength of 13.0 MPa for
amalgam bonded to dentin with All-Bond 2. the
bond strengths of amalgam are generally lower (less
than 10 MPa) than those of composite resin,!40-141170-174

Nevertheless, studies suggest that the use of adhesive
liners to bond amalgam may provide several benefits.
First, the amount of force required to dislodge an amal-
gam restoration is increased by bonding, thus reducing
the need for retentive devices such as dovetails,
grooves. and pins.7 Second. teeth restored with
bonded amalgam may be more resistant to fracture
than are teeth restored in the conventional manner.'”
Third. adhesive resin liners reduce leakage around
amalgam restorations more effectively than do tradi-
tional cavity varnishes.!"*1"17%-18 The reduced leakage
could result in less recurrent carious activity at restora-
tion margins.'"® Finally, clinical experience indicates
that the use of dentinal adhesives as amalgam liners re-
duces the incidence of postoperative sensitivity.!® This
effect is probably the result of marginal sealing and re-
duced permeability by the adhesive, in addition to the
seal provided by amalgam itself,!”!185:18

Because bonded amalgam restorations are a new
treatment modality, there is no documented clinical
evidence of their durability or superiority over conven-
tional amalgam restorations. One potential problem is
the incorporation of resin into the amalgam, which may
weaken the restoration.'®’

The use of resin adhesives to repair existing amalgam
restorations is not particularly successful. Studies indi-
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cate that adhesives have little or no effect on repair
strengths, and fracture resistance remains much less
than that of intact amalgam.'®-!%2

Resin-modified glass-ionomer cements

Glass-ionomer cements were developed in the early
1970s as a hybrid of silicate and polycarboxylate ce-
ments.!” Different formulations of glass-ionomer ce-
ments are now used as crown and fixed partial denture
cements, cavity liners and bases. core buildups, and di-
rect restorative materials. The two major advantages of
glass-ionomer cements are their adhesion to tooth
structure and fluoride release.'™'*

Tooth-colored glass-ionomer restorative materials
are generally reserved for use in Class III and root-
surface lesions. Clinical studies have shown that glass-
ionomer cements have high retention rates in cervical
lesions.!*1% In addition. laboratory studies predict
that use of glass-ionomer cements will decrease the fre-
quency and severity of recurrent caries.'* 2% However,
the glass-ionomer cements have a slow setting reaction
that necessitates delayed finishing and are sensitive to
moisture contamination and desiccation.'™*!% These
factors, plus concern about their strength and esthetic
qualities, have limited the use of tooth-colored glass-
ionomer restorative materials in the United States.?®

Some clinicians use the so-called sandwich technique
to combine the advantages of glass-ionomer cement
and composile resin in a single restoration.2®* A glass-
ionomer base or restorative material. which bonds to
tooth structure. replaces missing dentin. The glass-ion-
omer cement is covercd with composite resin, which
has more enamel-like qualities. such as translucency
and polishability. Recently. several manufacturers in-
troduced products that combine the properties of glass-
ionomer cement and composite resin in a single materi-
al. Several light-activated glass-ionomer restorative
malerials (also called hybrid glass-ionomer cements or
resin-modified glass-ionomer cements) are commer-
cially available, including Fuji II LC (GC America),
Photac-Fil (ESPE). and Vitremer (3M Dental). Some
of these products are closely related to conventional
glass-ionomer cements. while others more closely re-
semble composite resins.”™ Fluoride release varies
among materials,”™ but one recent study showed that
Photac-Fil and Fuji I LC released as much as or more
fluoride than do conventional glass-ionomer ce-
ments.”®

Like the light-activated glass-ionomer liners that
were developed earlier, true resin-modified glass-
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ionomer restorative materials actually undergo a dual-
cure setting mechanism.2® Mixing of the two compo-
nents of a material initiates the conventional glass-
ionomer acid-base setting reaction. In addition. expo-
sure to visible light initiates polymerization of water-
soluble resin monomers and methacrylate groups at-
tached to the glass-ionomer acid chains. The manufac-
turer’” has stated that Vitremer has a third and separ-
ate setting reaction that is initiated by oxidation and re-
duction catalysts. This reaction supposedly ensures
complete cure of the material even in areas that are not
accessible to the visible light beam.”” GC America also
claims that its Fuji II LC material has a triple-curing
mechanism. The third curing mechanism appears to be
spontaneous polymerization of HEMA. In addition,
postirradiation may occur, as in composite resins. Poly-
merization of composite resins continues for up to 24
hours after visible light activation ceases.”®

Light activation allows a longer working time and
shorter setting time than are possible with conven-
tional glass-ionomer materials, so placement and fin-
ishing procedures are less complex.”™ Manufacturers’
data indicates that the physical properties of the resin-
modified glass-ionomer cements are better than those
of the conventional glass-ionomer cements, and early
studies confirm these data.*®-%-2!! The light-activated
glass-ionomer cements have higher dentinal bond
strengths than do conventional glass-ionomer restora-
tives.2'"21* Bond strengths of some resin-modified
glass-ionomer materials may be improved by the appli-
cation of adhesive systems.”* Early reports on micro-
leakage of the resin-modified glass-ionomer restora-
tive materials have been quite good.2'>216

Summary

Advances in adhesive dental technology have radically
changed restorative dentistry. The acid-etch technique
for enamel bonding led to the development of a myriad
of restorative, preventive, and esthetic treatment alter-
natives. Recent advances in dentinal bonding have
taken adhesive dentistry to an even higher level. Cur-
rently, numerous systems are available for strongly
bonding resin to dentin. Most systems condition dentin
with an acid and use a hydrophilic primer to mediate a
strong micromechanical bond with the dentinal sub-
strate.

Some materials also bond to metal, leading to inno-
vative applications, such as for bonded amalgam resto-
rations and crowns. Other materials, such as the new
resin-modified glass-ionomer cements, aim to incorpo-
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rate adhesive and anticaries properties in esthetic res-
toratives. These and other developments in adhesive
dental technology have ushered in anew age of restora-
tive dentistry characterized by conservation of tooth
structure, improved restorations. and enhanced esthet-
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